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Summary of Phase P1 Results

Phase P1 consists of two tasks:

(T1] Task Ti: Analysis and design of finite wordlength implementations of linear, time-

invariant 6-Systems.

[T3] Task T3: 2-D and m-D 6-system models.

The major part of task T1 was carried out at the University of Notre Dame by Dr.

Peter H. Bauer while the major part of task T3 was carried out at the University of Miami

by Dr. Kamal Premaratne under grant No. N00014-94-1-0454. The project being an

extensive collaborative effort, the two PI's have been in constant contact.

The following is a summary of the phase P1 results.

Tak TI: Analysis and Design of Finite Wordlength Implementations of Linear,

Time-Invariant 6-Systems

The conclusions drawn from the work conducted for task T1 may be summarized as follows:

1. The Fixed-Point Arithmetic Case: When limit cycle performance is crucial, the q-

operator implementation is preferrable. The 6-operator implementation is superior

with regard to coefficient sensitivity issues.

2. The Floating-Point Arithmetic Case: Generally, the 6-operator implementation out-

performs its q-operator counterpart. In particular, in high-order and high-speed ap-

plications, the 6-operator implementation is the best choice.

Prior to a more detailed exposition, first we provide qualitative justification for the

above conclusion. The state equations of a 6-operator system can be written as:

b[x](n) = Adx(n) + B6u(n); (T1.1)

qlx](n) = x(n) + A .[x](n).

where x and u are the state and input vectors, respectively. Here, A denote a positive real

constant (typically, the sampling time). The symbol 6[.] denotes the 6-operator, that is,
6[x](n) = qfx](n) - x(n) - q - 1-x(n), (T1.2)

A x
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and q[.] denotes the usual q-operator, that is,

q[x](n) = x(n + 1). (T1.3)

The corresponding formulation of (T1.1) in terms of the q-operator is

q[x](n) = Aqx(n) + Bqu(n), (T1.4)

where

Aq -- I + A. A6 4=* A6 = Aq - I and Bq = A. B 6 4=4 B 6  B.q (T1.5)
A A

Now, given x and u, both representations compute q[x] with a certain accuracy.

Consider the 6-operator formulation in (Ti.1). Here we encounter two errors:

1. The first is due to the computation of 6[x], that is, the first equation in (TI.I). We
will refer to this equation as the intermediate equation.

2. The second is due to the eventual computation of q[x], that is, the second equation

in (T1.1). We will refer to this equation as the update equation.

Let us assume that the total error in computing q[x] is mainly due to the intermediate
equation in (T1.1) (rather than the update equation). Then, by choosing A sufficiently
small, the total error in computing q[x] will be approximately the error created by the

update equation which is smll!. In this case, the 6-operator representation has better
finite wordlength properties than its q-operator counterpart in (T1.4).

If, however, the errors accumulated in the intermediate and the update equations in

(T1.1) are comparable, q[x] computed through the 6-operator representation will show
approximately the same error as that computed through its q-operator counterpart as-
suming A is sufficiently small. If A is not sufficiently smaller than one, the 6-operator
representation will actually perform worse than the q-operator representation!

If the error introduced in the update equation is larger than that in the intermediate
equation, the 6-operator representation would consistently perform worse!! In reality, this

case is very unlikely to occur.

Next, a more detailed exposition follows.

T1.1 The Fized-Point Arithmetic Case
We now discuss some of the results regarding the fixed-point (FXP) case. Here, our results
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in fact indicate that, in case limit cycle behavior is crucial, the 6-operator representation
is NOT suitable with this arithmetic scheme (1]. Such a case may occur when nonlinear

systems are implemented through FXP 6-operator based schemes.

Zero-input limit cycles. Independent of A, zero-input limit cycles cannot be avoided
in FXP 6-implementations. This is easily explained as follows: If A is chosen very small,
the contribution from the intermediate equation being small (since 6[x] is being multiplied
by A), during the update equation, q[x] can be quantized to x creating a DC limit cycle,
that is, an incorrect equilibrium point different from zero results. We emphasize that, most
of the desirable properties of 6-operator implementations are based on a small A. We may
also show that, if A is chosen larger (this case is of course somewhat less important), DC
limit cycles will still exist. Hence, 6-operator representations cannot be implemented limit
cycle free in FXP format! This fact is independent of the particular realization of the

system.

Deadband size. Since 6-systems cannot be implemented limit cycle free in FXP format,
it is of interest to investigate te the size of such limit cycles since, in certain situations,
such small limit cycle amplitudes can be tolerated. It can be shown that, the magnitude of
A determines the magnitude of the limit cycle. The smaller the A, the larger will be the
deadband and hence the limit cycle magnitude. An approximate relationship regarding
this is

A x size of deadband = 1, (T1.6)

where the size of deadband is measured in multiples of the quantization step size. Here,
the deadband corresponds to that obtained by considering the quantization of A - b[x].
Therefore, the usual choice of a small A creates a larger deadband!

The input driven cage. Although the input driven case is not part of the originally
proposed work, some interesting results have been obtained. For small values of A, there
exists a bounded input signal that does not allow control of the state trajectory. In other
words, given sufficiently small A, the state trajectory may not be influenced by such an

input signal.

The influence of the realization. First, it was necessary to develop a suitable scheme
to investigate the effect of realization on the presence or absence of limit cycles. In this di-
rection, for the q-operator case, a computer-based exhaustive search algorithm that checks
for limit cycles (DC and/or oscillatory) has been developed [5].
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As discussed before, we have shown that, a stable linear time-invariant 6-system cannot

be implemented limit cycle free in FXP. The size of the deadband however also depends on

the particular realization, that is, the structure of A6. Given a system transfer function,

there are forms which minimize this deadband size with respect to some appropriately

chosen measure. For example, in order to minimize DC limit cycle amplitude, one may*

choose the normal form (in terms of A6 ) as a suitable candidate.

The influence of quantization nonlinearity and its deadzone. Since a larger deadzone

implies larger DC limit cycle amplitudes, the use of quantizers with reduced, or even

zero, deadzone was therefore proposed. In investigating first-order systems, by reducing

the deadzone, it was found that, existence of DC limit cycles can indeed be reduced.

Unfortunately, other oscillatory limit cycles will be created. This phenomenon is due to

the increased gain exhibited towards small input signals by the quantizer.

Scaling. As discussed above, we have shown that, independent of either the form of

A6 or the magnitude of A, a FXP implemented 6-system cannot be free of zero-input limit

cycles. Hence, scaling cannot be offered as a possible solution.

T1.2 The Floating-Point Arithmetic Case

The floating-point (FLP) implementation of 6-systems is currently under investigation.

The results obtained so far are very encouraging, and indicate that, quantization errors

due to FLP arithmetic have a much smaller effect on the system behavior than in the FXP

case. In fact, preliminary results show that, for 6-systems of order three and higher, errors

in computing q[x] can be made significantly smaller than for the corresponding q-systems.

This is because, for a FLP implementation of such a system, errors created through the

intermediate equation are larger than those created through the update equation. As

previously mentioned, in this situation, 6-systems behave better than their q-operator

counterparts!

Limit cycles. In FLP arithmetic, a linearly stable time invariant system, under zero-

input conditions, may exhibit four types of responses: A diverging response, an oscillatory

periodic response of arbitrary magnitude, an oscillatory periodic response in underflow,

or an asymptotically stable response. Only the last two response types are acceptable in

practice. It is well known that, the last response type is in fact a very stringent requirement

and is often not required in practice. Results so far obtained show that, when the require-

ments for a response in underflow are compared, the 6-system requires less wordlength

than its q-system counterpart! This advantage in fact grows with the order of the system!!
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Once the system reaches underflow conditions, the 6-system again exhibits DC limit

cycles. However, if the exponent register is chosen sufficiently large, the amplitude of these

oscillations can be made extremely small and hence, for all practical purposes, this problem

is solved.

Deadband size. If the condition on the mantissa length that guarantees convergence

into underflow is satisfied, then the deadband size will be very small. Hence, it can be

neglected for all practical purposes. This assumes a properly chosen exponent register

length since the exponent register length determines the dynamic range of underflow.

The Influence of the Nonlinearity. Unlike the FXP case, the characteristic of the

nonlinearity has only a minor effect on the system behavior, significant differences being

present only in underfiow conditions

The Underflow case. In underflow, the 6-system seems to behave worse than its q-

operator counterpart. This is mainly due to the fact that, a FLP system in underflow

essentially performs very similar to a FXP system. However, as mentioned above, if the

dynamic range of underflow is chosen properly, the system behavior in underflow is of little

practical interest.

Block Floating-Point Arithmetic. Even for the q-operator case, results regarding block

FLP implementations are lacking. Hence, investigations regarding block FLP implemen-

tation of 6-systems is in its early stages. In order to obtain a comparison between the two

types of implementations, current research is geared towards obtaining results applicable

for the q-operator case.

T1.3 The Multi-Dimensional Case

The results on one-dimensional (1-D) 6-operator implementations in FXP arithmetic di-

rectly carry over to the multi-dimensional (m-D) case. The existence of non-converging

responses along the boundary of the causality region can easily be proven using the same

type of argument used in the 1-D case. Consequently, 6-operator based implementations

of m-D systems cannot be implemented limit cycle free in FXP.

Tak T3:2-D and m-D 6-system models
Discrete-time systems implemented using the 6-operator, as is clear from the discussion

above, exhibit superior finite wordlength properties with FLP arithmetic. In the case of

FXP arithmetic, they still provide superior coefficient sensitivity. The development of 2-D

and m-D models applicable for 6-operator implementations was hence motivated with the
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expectation that these properties would still hold true.

The conclusions drawn from the work conducted for task T3 may be summarized as

follows: Similar to the 1-D case, under FLP arithmetic, the 6-operator implementation of

2-D and m-D discrete-time systems provides the best choice. Again, this is particularly

true in high-order and high-speed applications.

Sate-.space models. In Roesser local s.s. model of q-operator formulated 2-D discrete-

time systems takes the form[q,&[XI,,I](i I )] A()' A (2) X[(,j B(1)
[(3),,(4) =,j)[ (2) + u(i,j)19[XI](.0J)] [Aq,• .Aq II)J
[,,] ( ~j)]±tquii;(3

- [Aq] x(ij) + [B,]u(ij);
[XV~~j)](T3.1)

y(i' j) = Cq() Cq2)] [x"(i1j) + [Dqlu(i~J)
[xV(iJ)]I

- [ h4]x(i~j) + [D.) u(i, j),

where A(') is of size nTi x nh, Aq4* is of size n,, x n,,, etc. Also, qh,,. and q.[.] denote the

horizontal and vertical shift operators, that is,

qh[xj(i,j) = x(i + 1,j) and q.[x](i,j) = x(i,j + 1). (T3.2)

To exploit the advantages of 6-operator implementations, analogous to the 1-D case,

we define the operators

6b[x](i,j) = x(i + 1,j) - x(i,j) _ qh[x](i,j) - x(i,j);
Ah Ah (T3.3)

6b,[x(i,j) = x(i,j + 1)- x(i,j) = qV,[x](i,j) - x(i,j)

A,, AV,

where At and A, are two positive real constants. The corresponding 6-operator s.s. model

may then be obtained as
bx1(') [A(') A(2) X~,, ]+[ B(1) ]UjjE ,,[x"](i,j) A 3A) A(4) xh(i,j) B (2)

-[A] x iiJ) + ]u j)

I' (i, J) (i (T3.4)

y('j)= [C(x) C( 2 ) ij) + [D]u(i,j)

- ¢ x"(iDj + [D] u(i, j).
[C] O
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This is the 2-D version of the intermediate equation mentioned earlier. In addition, as for

the 1-D case, we have the following update equations:

qA[xh](Ij) = xh(i,j) + Ah " & [Xh](i'j);
qv[X'Ti) -= X"(i,j) + A-, 6V[xv](i,j).

Note that,
Aq=I+A 6 =A6= 1=A-'(-I1);
B9 = A . B #= B6 = A-' • B,; (T3.6)

Cq = C6 C6 Cq;

Dq = D 6  D6 Dq.

Here, A = [AhInh E A•vIj] is of size (nh + n,) x (nh + n.).

The associated system theoretic notions, such as, transition matrix, transfer function,

characteristic equation, etc., have also been introduced. This s.s. model is the basis for
designing 2-D filters with superior finite wordlength properties. The design procedures
developed are expected to be extremely useful in obtaining high-Q 2-D and m-D digital

filters that axe suitable for high-speed applications.

Stability. In the 1-D case, it has been shown that, direct techniques with no recourse
to transformations (that first converts a given 6-system to its q-system counterpart) can
provide numerically more reliable stability checking algorithms. With this in mind, for the
2-D case, a direct stability checking technique applicable to the corresponding 6 -system
transfer function has been introduced. For this purpose, a recently developed tabular form

was extended to the complex coefficient case and the notion of Schur-Cohn minors was
introduced to the 6-operator case.

Gramians and balanced realization. The notions of reachability and observability
gramians and balanced realization have been introduced for the 6-operator case. In order
to do this, first, the relationship between the gramians for the 6- and q-operator cases, as
defined in the literature, was established. The reachability and controllability gramians,

that is, P and Q, respectively, for 1-D 6-systems were found to satisfy

To i1+ Ac'
(I- Al- n;cI-A)x1+ Ac;

1 f dc(T3.7)

Q - 2-', ( -A,*)-I'C6C6(cI - A6)- 1  dc

where T6 is the stability boundary applicable for 6-systems, that is, T6 = {c E I : jc +
1/A�l - 1/A}. An extension of this is then used to define the 2-D gramians of 6-systems
represented in the Roesser model developed above.

7



For the important class of separable (that is, separable-in-denominator) sy-•ems, it

is shown that these gramians may be computed through the solution of four Lyapunov

equations. These notions and results are useful in many applications, such as, in extracting

reduced order models of 6-systems.

Sensitiuityi. Measures that indicate coefficient sensitivity of the 6-models developed
above have been introduced. Unlike what is available in literature, this development is

applicable to the MIMO case as well. With these sensitivity measures as a guide, devel-

opment of minimum sensitivity structures has been carried out. The connection with the

corresponding balanced realizations has been pointed out.

Roundoff noise. With the use of a noise model that takes into account the roundoff

error propagation in the s.s. model developed above, structures that minimize roundoff

noise have been developed.
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Limit cycles and asymptotic stability of
delta-pperator formulated discrete-time systems

implemented in fixed-point arithmetic

Kamal Premaratne Peter H. Bauer
Department of Electrical and Department of Electrical Engineering

Computer Engineering Laboratory of Image and Signal Analysis
University of Miami University of Notre Dame

Coral Gables, FL 33124 Notre Dame, IN 46556
USA USA

(+1) 305-284-4051 (+1) 219-631-8015
kpremaQumiami.ir.miami.edu pbauer~mars.ee.nd.edu

ABSTRACT
able in [2].

This paper analyzes the problem of global asymptotic
stability of delta-operator formulated discrete-time sys- In this work, we focus on the convergence behavior of the
tans implemented in fixed-point arithmetic. It is shown unforced system response and global asymptotic stabil-
that the free response of such a system tends to pro- ity of 6-operator formulated discrete-time systems imple-
duce period one limit cycles if conventional quantization mented in fixed-point (FXP) arithmetic. In particular,
arithmetic schemes are used. Explicit necessary con- via necessary conditions for stability, it will be shown
dititns for global asymptotic stability are derived, and that such systems tend to produce DC limit cycles.
these demonstrate that, in almost all cases, fixed-point
arithmetic does not allow for global asymptotic stability The structure of this article is as follows: In Section II,
in delta-operator formulated discrete-time systems that we introduce notation and nomenclature. The model for
use a short sampling time. 6-operator formulated discrete-time systems, with and

without quantization nonlinearities, is briefly discussed.
Section III addresses the problem of asymptotic stability
when FXP arithmetic is used for the implementation.

I. INTRODUCTION In terms of ensuing DC limit cycles, necessary condi-
tions for global asymptotic stability are formulated. It

Recently, discrete-time systems formulated with the in- is shown that, when FXP arithmetic is used, stability
cremental difference operator (or, 6-operator) have been of the linear system is often lost. Section IV provides
receiving considerable attention in the technical litera- concluding remarks.
ture (1-4J. Most of this work focus on its superior per-
formance under finite wordlength conditions when com-
pared with those formulated with the shift-operator (or, 1U. NOTATION AND NOMENCLATURE
q-operator). In particular, investigations of coefficient
sensitivity and quantization noise properties have re- Since our focus is on investigation of stability proper-
vealed that 6-operator formulations usually perform sig- ties of 6-operator formulated discrete-time systems un-
nifiematly better than their q-operator counterparts [1- der unforced conditions, the state equations of the sys-
4). This is especially true for high-speed applications tern under zero-input will be considered.
where the sampling rate is much larger than the un-
derlying system bandwidth. Under these conditions, q- In the linear case, the general m-th order state-space
operator formulated discrete-time systems tend to be- representation is given by
come ill-conditioned [1-2J.

Although a large amount of work is available on the 6[x](n) - A6 x(n); (1)
effects of coefllcientsensitivity and quantization noise, a x(n + 1) = x(n) + A • 6[x](n), (2)
deterministic study of the nonlinear behavior of discrete-
time systems formulated with the 6-operator has not
been undertaken. In the case of floating-point (FLP) where x(n) = (z I(n), x, zm(n)]T is the state vector at
arithmetic, some results for feedback system are avail- instant n, A6 = {afj) E R"'"' is the system mnatrix,
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and A > 0 is the sampling time. Moreover, 6[-] repre- III. NECESSARY CONDITIONS
ents the 6-operator, that is, FOR STABILITY

-=.(n+1) - x.(n) 1. m, (3) First, we will consider thesystem described by {(4), (6)).

- .From the definition for global asymptotic stability as

stated in the previous section, it is necessary that

and 6[xJ(n) = (6(zl(n) .. 6[zm](n)]T. The actual im-
plementation of (1) and (2) in FXP format gives rise to Q{A. 6[x](n)) A 0, for any x(ra) 6 0. (8)
nonlinear quantization operations that occur at various
locations depending on the hardware realization. This is just one of a finite set of conditions that is re-

quired to ensure global asymptotic stability of a FXP
Eqn. (1) can be implemented either by using single implementation of a linearly stable system (5].
wordlength accumulators (creating a quantization error
after each multiplication) or by using double wordlength In the case of rounding, condition (8) is violated if
accumulators (creating a quantization error only after
summation). We will only consider the latter option £
since practically all modem DSP machines implement jA •6[z.](n)l < - for any V = 1,...,m. (9)
this. Eqn. (1) can then be written as 2

6[xl(n) = Q(4) The sampling time A in a 6 -operator formulated imple-
-Q{Ax(n)}, mentation is typically very small. With A = It and (9),

we have
where Q is a vector-valued quantization nonlinearity of

the form
(Q{z} 16(zv,(n)i < 2-1, forany V-=1,...,m, (10)

QIx}• (5)
where I is a positive integer.

Here, Q{z,)} denotes magnitude truncation, two's corn- In the case of magnitude truncation, (10) takes the form
plement truncation, or rounding.

Eqn. (2) can be implemented in two different ways: 16[z,](n0l for any v =I .... m. (11)

x(n + 1) = x(n) + Q{A. 6[x](n)f, (6) Accordingly, for two's complement truncation, we have

or 1or0 _< 61--d(,) < I', for any V. = M.. ,. (12)
x = Q{x(n) + A6[xl(n)}. (7) 1

Eqn. (6) corresponds to quantization after multiplication Conditions (10-12) describe the deadband, in terms
while (7) corresponds to quantization after summation. of 6[x], for which a DC limit cycle occurs. Such a limit
In contrast to (1), for (2), it is not clear which of the cycle can be avoided if (10-12) are satisfied by the zero
two quantization schemes in (6) and (7) is preferable. vector only. In the case of rounding, we therefore require
We will therefore consider both possibilities.

1

Throughout this paper, we will use the following defini- 2> '

tion of stability:
or, equivalently, 1

Definition. The discrete-time system in {(4),(6)) A > 1 (13)
or {(4),(7)) is globally asymptotically stable if and 2
only if, for any initial condition x(0), the state vec-
tor x asymptotically reaches zero, that is, x(n) - 0 which is impractical. Similarly, for magnitude and two's
for n -- oo. complement truncation, we obtain

Comment. Since the FXP systems considered are in fact 1 (14)
finite state machines, the condition x(n) - 0 for n -- oo t

may be restated as x(N) = 0 for some finite N [5].
which again is equally impractical.

Finally, the symbol I is used to denote the quantization
step. This result is summarized in the following theorem.
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T7iorem 1. A neceosary condition for stability of the In the case of the remaining two quantization schemes,
6-operator formulated discrete-time system in {(4), (6)) the inequalities corresponding to (16) are given as fol-
is A > 0.5 for rounding and A > 1 for truncation, lows: For two's complement truncation,

The above theorem sb~ows that high-speed 6-operator
formulated implementations that possess a small sam-
pling time cannot be realized limit cycle free in FXP 0 < A6 •x(n) < () x(n) • 0, (17)

format!

A second necessary condition for the system in {(4), (6))
can be obtained by noting that and, for magnitude truncation,

fx(n)=0 <A6-x(n) < x(n) . (18)

can occur in (4) even though the state vector x(n) $ 0.

Therefore, for rounding, no nonzero state vector x(n)
that satisfies A similar analysis can be conducted for the system

in {(4),(7)). Since (4) is common to both realizations,
2 2 (16-18) are still valid and provide conditions under which

the finite difference is quantized to zero and a DC limit
(16) cycle is produced. We will now briefly discuss neces-

sary conditions for global asymptotic stability obtained( 2 from (7).
may be allowed to exist. Here, the inequality has to For rounding, proceeding as in (9), we have
hold elementwise. Taking norms on both sides of (16
one gets an algebraic condition on the system matrix A f
that always support DC limit cycles. Eqn. (16) has the A "6[z,](n)l < 2, forany v=1,...--
following interesting interpretations:

and therefore
1. Each of the resulting m inequalities can be geomet-

rically interpreted as the intersection of two half 16[zv](n)l < _ for any v = 1,...,m. (19)
spaces in R,. These intersections are symmetric -21!'
about the origin and have parallel boundaries. The
normal vector to the boundaries is given by the
particular row vector of A 6 . Only if the intersec- For magnitude truncation, we obtain
tion of all such m half spaces contains a nonzero
point in R", and if it belongs to the quantization 0 < 6[zx,](n) < Vb[ ,V ] _ 0, (20)
lattice, will there exist a nonzero state vector that
is an equilibrium point of the system. and

1

2. Eqn. (16) can also be interpreted from an eigen- - < 6[x](n) < 0, Vb[z,] < 0. (21)
value/eigenvector viewpoint. In high-speed digi- I

tal filters where the sampling frequency is typically In the case of two's complement truncation, the condi-
much higher than the bandwidth of the processed tion for a DC limit cycle is given by
signal, a q-operator implementation's eigenvalues 1
cluster around the point z = 1 [1]. The correspond- 0 < 6[zv](n) < VV M. (22)
ing 6-operator implementation for large sampling
times has eigenvalues clustered around zero. How-
ever, as the sampling time becomes small, these
eigenvalues move towards the eigenvalues of the With A = I. t, I being a 'small' integer, we come to the
underlying continuous-time system (1]. In other same conclusion as for the previously considered system:
words, for large sampling times, the system matrix
will be ill-conditioned, that is, vectors x(n) 6 0 A > - for rounding;
exist such that A6 • x(n) is close to the zero vector. 2
According to (16), this is likely to cause a DC limit A > 1 for truncation.
cycle. For small sampling times, this problem may
not occur; however, in this case, the conditions in Therefore, Theorem I also holds for the system repre-
Theorem I are not satisfied! sentation in {(4), (7)).



IV. CONCLUSION

Via a s of necemary conditions for global asymptotic
stability, it has been shown that high-speed, limit cycle
fAm 6-operator implementations of linear discrete-time
systeims cannot be realized. This is due to the tendency
of uch a tealization to produce period one limit cycles.
This situation arises from small values in the finite dif-
ferenc, being quantized to zero. Hence, convergence to
the 'wrong' equilibrium point is very likely. Conditions
on the system matrix and the sampling time if such limit
cycle behavior is to be avoided have been provided. The
results indicate that, in high-speed applications, these
conditions cannot be satisfied with conventional quanti-
zation schemes.
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FIXED-POINT IMPLEMENTATION OF MULTI-DIMENSIONAL
DELTA-OPERATOR FORMULATED DISCRETE-TIME SYSTEMS:
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University of Notre Dame University of Miami
Notre Dame, IN 46554 Coral Gables, FL 33124

Abstract- In this paper, the convergence
properties of linearly stable multi-dimensional earities. Using these necessary conditions, section IV
systems are Investigated for the case of delta- provides a stability and convergence analysis for m-D
operator implementations in fixed-point format. systems. It will be shown that the resulting I-D systems
It Is shown that zero-convergence is almost never cannot ensure zero-convergence. Section V contains con-
achieved, if the sampling time is small. Using a cluding remarks.
one-dimensional analysis, it is demonstrated that
aero-convorgence cannot be guaranteed along the II. NOTATION AND PROBLEM FORMULATIONaxis of the first hyper-quadrant for a first hyper-

quadrant causal system. This limits the use The m-D Roesser model has the following 6-
of delta-operators for solving partial differential operator formulation (4]:
equations in discrete time with fixed-point arith-

r Im x(1 )(n)
[. INTRODUCTION[" 1 A ". 1 1

Delta-operator (or, 6-operator) implementations of

discrete-time systems have been the topic of a number [6(I)[x(t)](n)] A 6 I ... Am x(-)(n).
of research papers within the last decade. A compre- Bf
hensive treatment of the properties of 6-operator imple-
mentations can be found in (1]. It is well known that + u(n);()
6-operators outperform shift-operators (or, q-operators)
in terms of their finite wordlength properties [2]. In par- B6ticular, its quantization noise and sensitivity properties ql[xt(n x())

make the 6 -operator an interesting alternative to the q- q [x(1 )j(n) x(l)(n)
operator in areas such as digital control, digital signal [ •
processing, and generally discrete-time simulation of dy- [
namical systems described by differential equations [1], X(m)(f)
[3].

In this paper, we will perform a deterministic r6()[x()](n) "
analysis of the finite wordlength properties of multi- I 1
dimensional (m-D) 6-operator implemented discrete- + a ". (2)
time systems. In particular, we will investigate the zero-
convergence of 6-operator fixed-point implementations of . 6 (m) ix(-)](n) J
one-dimensional (l-D) and m-D systems. Although it is
of vital importance, this problem has not been investi- The input-state equations in (1) and (2) describe a first
gated thus far in the literature. After all, asymptotic hyper-quadrant causal m-D system with a uniform sam-
stability and convergence to the true equilibrium points pling period of A in all directions. The operators q(')
are some of the most fundamental requirements for any and 6(') represent the shift- and delta-operator in the
discrete-time system realization.

This article is organized in the following way: Sec- dirction specified by the axis hi. in particular
tion I1 introduces the notation. The m-D 6-operator
model will be introduced and briefly discussed. This q(')[x(')](n)
section will also provide the problem formulation. Sec-
tion III provides necessary I-D stability conditions for X ((l,... ,h.-1 ,ni + 1,ni,..,n,) (3a)
m-D first hyper-quadrant causal systems with nonlin- 6(')(x(')I(n)

0-7803-1797-1/94/$3.00 0 1994 IEEE
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-- (x(Q'(n1,.... ,rns,ni1 +,ni + 1 ,... imn) Equation (5) corresponds to quantization after multi-
pIication, whereas (6) corresponds to quantization after

-- X(')(n)). (3b) addition. In contrast to (1), for (2), it is not obvious
which of the two forms stated above is preferable.

He", (u) a (nt. •_.,n,) denotes a point in the first The following definition for asymptotic stability (51
hyperuandrant, x0)(n) is the portion of the state vec- will be used throughout this paper.
tor propagating in the direction specified by the axis ni,uJ(n) is the m-O input vector, sad A.j and B4 , fori Definition. An m-D first hyper-quadrant causal discrete-

a itime system is asymptotically stable under all finitely
S....m, j = 1,.. ,m, are the submatrices of the sys- extended bounded input signals u(n) where

ten and input matrices, respectively.
If (1) is realized in fixed-point arithmetic, it takes Iu(n)I : 5, for ni + + un <D (7)

the following form under zero-input conditions:
u(n)=0, for ni+-..+nm > D, (8)

[) if all the states of the m-D discrete-time system asymp-
totically reach zero for n1 + ... + nn - coo. Here,
n. >_ 0, v = 1.... ,m, S is a nonnegative real number,
and D is a positive integer.

6A (a) (4) Since the fixed-point systems considered are in fact

11]nit Lstatel machines, the condition
4 (x(l)(n)

QLA I) .. A Lxx)n)"- -o,)

whereQlx)= ( : with x =( 1
forn +..+nin -- oo, n, > 0, 1 ... ,m,can be

ton; / strengthened toEquation (4) assumes q t isto after summa-
tion; since practically all modern DSP machines imple- x(,)(n)/

ment this quantization scheme, we utilize this. The
vector-valued quantization nonlinearity Q{.1 may rep- "0
resent any one of the conventional schemes, viz., magni-
tude truncation, magnitude rounding, two's complement x(m) (n)
truncation, and two's complement rounding.

Equation (2) can be implemented in two different for all points nl + .- + nm > c, n,, > 0, v = 1,._ m,
forms where c is some finite integer.

q(l)[x(')](n) Problem Formulation. Analyze the asymptotic zero-1 convergence of the state response of systems in (4,5)
and (4,6) under the assumption that the underlying lin-I (,,')[x(")](n) ear system is asymptotically stable.

x(1)(n) ( 6(1)[x(WJ(n) 111. NECESSARY CONDITIONS FORiX(•)GLOBAL ASYMPTOTIC STABILITY
AQ (5) OF m-D SYSTEMS

x() (n)[J In this section, we present some necessary condi-or tions for stability of a first hyper-quadrant causal rm-
D discrete-time system represented in its Roesser local

q(l)[x(0)](n) state-space model in (1,2). These necessary conditions1• are formulated in terms of 1-D conditions. This theorem
follows directly from a result in [6) which was formulated
for q-operator implemented discrete-time systems. The

)n Jproof of the theorem rests on the fact that a first hyper-
X(1)(n) 0WIM quadrant m-D system can be described by a I-D system

)[". for those locations that are along the m coordinate axes
+ "6) of the boundary of the hyper-quadrant. Reformulating

the result in [6] for 6-operator systems produces the fol-
Lx() (n) J6(i)(x(-)J(n) lowing theorem:
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71sorm j. Now, we are in a position to formulate the second theo-
(a) A nmessiwy condition for global asymptotic sta- rem which presents a necessary condition for stability of

bility of the system in (4,5) in that each of the following l-D systems.
I-D systems in (9,10) is globally asymptotically stable: Theorem S. A necessary condition for global asymptotic

6(i)[X(i)](ni) = 4 {[A#,]x(')(n.)} ; (9) stability of the system in (13,14) or (13,15) is given by

q(')[x(0)(n.) = x(i)(n1 ) + Q {A -6(')x(')](n,)} (10) A > 0.5, for magnitude rounding;

wh•e i 1,...m. a > 1, for truncating.
(b) A necemsry condition for global asymptotic sta-

bility of the system in (4,6) is that each of the following Proof. For global asymptotic stability of (13,14), it is
in I-D systems in (11,12) is globally asymptotically sta- necessary that
ble:

:6( x(A(n) {Ax('(n 1 )} ; (11) *!- [ 6lzi]() a0, (16)

q(i)tx(i)j(n,) = q {X(i)(,) + &. 6(')[x('01(n,)} (12) 6[ I. 6 IZKI(,l) oJ

whom t =,...,m.

Prof. For a detailed proof, and generalizations to higher Z (n)
sub-dimenuional systems, the reader is referred to [6). U for any ) •0.

Theorem 1 can be viewed as an extension of the ZK(n) )
concept of practical BIBO stability to asymptotic sta- First, we will address the case of magnitude round-
bility of nonlinear systems. It is particularly useful in ing. Obviously, condition (16) is violated if, for z,. A 0,
proving instability in m-D nonlinear systems.

IV. NECESSARY CONDITIONS FOR 14. 6-(Z-H) < -, for v = , ... K, (17)
GLOBAL ASYMPTOTIC STABILITY

OF I-D SYSTEMS where t is the quantization step. Expressing the sam-

Let us rewrite (9), (10), and (12) as 1-D matrix pling time A as an integer multiple of t, we have
equations of order K. In this case, (9), (10), and (12)
yield (13), (14), and (15), respectively: A=I., (18)

6tzul(n) where I is some (typically small) positive integer.
With (17) and (18), we obtain the following condition

t6(zI(n)] }for instability:

oI oa1K ,()1[11l< ,,=I..,M, (19)
= ••; (13)<21

L1 , IK ZK(•') for z. • 0, V 1,...,. .
,Condition (19) is not satisfied for any nonzero valuez(n+- 1) of z•, (that is, the condition for instability is not satisfied)

if I > 1/21, or equivalently,
ZXK(f + 1) 1

= • + •. ;(14)L+Q{A. JJL[K (- This proves the theorem for magnitude rounding.

ZK(n" ) 6[hKI(ro) For the case of magnitude truncating, (17) takes

s z(n + 1)1 the form

Izg(n+)l JIA'6{z.](n)I < t, for V,= 1 .... I(. (21)

xr 1 (n) 1 [6zi '(n) Therefore, (19) becomes

XII (n) J [6KI(n)J I6[z1(-)I < 1 (22)
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This fially yields V. CONCLUSION

-- .In this paper, it was shown that fixed-point imple-

For two's complement, (17) takes the form mentations of I-D and m-D 6-operator systems are not

0 _• A" 6(z1(t) < t, for v,= I,...,K. (24) limit cycle free even if the underlying linear system is

T r stable and the sampling time is chosen small. This non-
convergent behavior can be explained by the quantiza-

0 <5 6[z.](n) < V, (25) tion of the 6-term to zero which leaves the state vector
and conseqently, A > 1. This proves tie theorem for unchanged. The smaller the sampling time, the more
the nsequently3,14 A s1Tis provest theorem severe this effect is. Therefore, the practical value of
the system in (13,14). A similar a igument can be used 6-operators for fixed-point implementations of I-D and
for the system in (13,15) by considering the cases for m-D systems is questionable. There are however indica-
which tions that this effect is much less severe in floating-point

( [z(n) 1f [fI J(n) implementations.
• + . •6-operator implemented discrete-time systems rep-

resent a class of systems where the quantization noise
S'(-) J (26) at the output can be small compared to other realiza-

(6 t)ions. However, as was shown above, such realizations
will invariably exhibit limit cycle, that is, highly cor-

-- ,related quantization noise, behavior. Therefore, in this
zK(n) case, typical measures for quantization noise are of very

limited use for obtaining any insight into the likelihood
for nonsero state vectors. of limit cycles and vice versa.
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Abstract-By developing the 6-operator ana- B. Preliminaries
log of the Roesser model, state-space realiza- Consider a linear, shift-invariant, strictly causal, p-input
tion of two- and multi-dimensional 6-systems q-outrut 2-D DT system. Its n,%h-nvv Roesser local s.s.
Is investigated. The corresponding notions model {A, B, C, b} takes the form [12]:
of gramians and balanced realization are also
defined. It is shown that, discrete-time sys- &q [xh](i,j) D (A X (i"J)] +(auij);
tern implementation using this model can [q[xv](ij) x`(/,j) (2.1)
yield superior coefficient sensitivity proper- r x+ i~j)] (2.1)ties. Y,(i, J) -- [C x(i, i) j+[~,)

I. Introduction
Judging by its performance in the one-dimensional (1- where u E tP, xh 6 a"nd, xv l oca, and y e crs. Tk

D) case [21, (5-6], one is led to expect superior coeffi- and x are the h.p. and v.p. local state vectors. Take
cient sensitivity and roundoff noise performance with 6_ n = n)4 + n.. Also,

operator implementation of two-dimensional (2-D) and
multi-dimensional (m-D) discrete-time (DT) systems. qh,[x](i,j) = x(i + 1,j); q.[x)(i,j) = x(i,j + 1). (2.2)

With this in mind, 6-operator analog of the q-operator
Roemer local state-space (s.s.) model [121 is developed. In what follows, we use matrix partitioning that con-
We also propose the notions of gramians and balanced form to A ` r A(') A() B- () and C
(BL) realization. As expected, realization using this [A 1 &

2) 1 a
model can provide superior coefficient sensitivity prop- [-(1) &(2)]. The corresponding 2-D characteristic equa-
erties. tion and transfer function are

II. Nomenclature and Preliminaries det[I - A] = det[zhIft h Z, z - A]; (23)
A. Nomenclature (2.3)

R: Reals; !: Complex numbers; RKXP, Wqxp: Matri- H(zh,z.) = C(I, - A)-B +D,

ces of size q x p over R and %; 1,: n x n unit ma-
trix; A*, trace(A], IIAIIr: Conjugate transpose, trace, where zhrz, zE 1. 6 •- zhIn, ED zvIn. E jn,. With no

nonessential singularities of the second kind (NSSK) onand Frfbenius norm of matrix A; e,(")- Unit vector in q{, ,,/ iBBOsalif[3

(P (q) (p*T 2  DI is BIBO stable iff [31
It with I on the i-th row; E•,ý =(€)-EP)°

Eq.Cxi) 6 xE• 
--2 (X2P2

t xp = z det[= 1  - ,A] -A 0, V(z, .) E ! (2"
For q- and 6-systems, we use the indeterminates z and

c, respectively. For 1-D systems, 6 = (q - 1)/r = c = III. 2-D 6-Model
(z - 1)/r, where r is a positive real constant, usually A. Local s.s. model

the sampling time. Let 62 = {(ch, c,) E ja2 : 1ch + Analogous to the 1-D case, define 6 1[-] and 6,[-] as
I/7,i _< I/rh,lcv + 1/rj < 1). T62 is its boundary.
The corresponding q-system regions are denoted with the x(i + 1, j) - x(i, j) q_ [x](i, j) - x(i, j)
subscript q. 6h(x](i, j) =- I

rh rh

K.P. and P.H.B. gratefully acknowledge the support received Oj) =(ij i"+ 1) - x(i,j) _ qV(x](i,j) - x(0,j)

from the Office of Naval Research (ONR ) through the grants &( r"p

N00014.94-1-0434 and N00014-94-1-0387, respectively. (3.1)



HRo.r. and r. am positive real constants denoting the where f(u) = E(oO)<(ho k)<(ij)(A ih r1(•-) 1
'sampling times' along h.p. and v.p. directions, respec- 0 u

tively. Note that + A-hj-k-1.r B2) ] )u(h,k).

Let le ciI,, c.. E !aft x nx- Then, the 2-D 6-
q= 1 + r6h; qj = I + r,6., (3.2) model's characteristic equation and transfer function are

and letting r = [-h I. , t, ] E R11Xf, det(I[ - A] = - det[I -, i (3.9)

qj, 4 6l", 0 Adet(rl 39
Iqx'10,j)J - +r 0 6 x H(ch, c.) = A- z,,L.,

(3.3) where

Using (3.3) in (2.1), we get z3 r 1 + rhch; z, = I + rcv. (3.10)

r6,~XA)(/,j) r Bxh(i) ] From now on, the variable transformation in (3.10) is
16.[x'](ij) -j A] ) +([eu(i ') denoted by c - z or z - c whatever is appropriate.

Y(ij) (C] j +(D]u(i (3.4) Nonsingular transformations of the type
¥(i~~i) -- 

j)' 71(ij [ 
+h [iuij)]

where A A(LA; ) A(2) ' B) and C [ (3.11)

[C(1),2C(2)] In addition, we need to perform where T -- (T(1 ) E T( 4 )], yield the equivalent 2-D s.s.

realization { A, B, C, D}. Here,

q% [X]=xhX1+ A,(xh]; q.[xx]=x++ r,-,v[xl]. (3.5) A,=TAT-'; b=TB; .=CT-1 ; 15=D. (3.12)

Here, With no NSSK on T72, {A, B, C, D} is BIBO stable iff

A i-n + rA; B ; C=c; = D. (3.6) det[Ic - A] 6 0, X(ch, c) E/U-'-. (3.13)

B. Properties of the 2-D 6-model C. Gramiana
Most of the following properties may be derived in a man- The gramians of 2-1D q-systems are taken to be natural
ner that is exactly analogous to that in (121. extensions of the integral expressions of their 1-D coun-

The tranuition matrix A"' of the 6-model, may be terparts [11]. We will adopt a similar approach. In what
recursively computed from follows, we consider the 1-D (or 2-D) stable 6-system

{A, B, C, D} with gramians P and Q. The correspond-
0, (i,j)--(0, 0); ing q-system is {A, B,C,Db} with gramians P and Q.
(In , 9 1.,], (i,j)-=(0, 0); 1-D case. The gramians are defined in (10].

A"' 0 +r ) A( 2) (ij)(1,0); Definition 3.1. (10]. The gramians are the solutions to
Air 0 the Lyapunov equations1 () (i, j)o(0, 1;0in., I I AO(• AO AP +PA*+-r-(O,=1);*

A 1 °A'-",j + A 0, 1 Ai-j-1, elsewhere. AP+PA +"•APA =
A*Q + QA + . A*QA = -C*C.

(3.7)
The general response of the 6-model is Lemma 3.1. The gramians satisfy the integral expres-

sions

xA(ij) =Z A"J-" xko,k) P = I2;r-- FF" ; Q = G O*G dcE-Ifi0 1 +r•c 2•rj 1 + rc'
k=O 1 (3.8) 4 1

"+} A'-"' x.(,O0) +f(u), where F(c) (c/, - A)- B and G(c) -- C(cIn - A)

hfo (h Moreover, P = •P and Q = Q/r.



Proof. Substitute A = In + rA, B = rB, C = C, and when {A, B, C, D} is locally reachable and observable,
b = D (101 in the equations in Definition 3.1, and note p(l), p( 4 ), Q(1), and Q(4) are each p.d.
the integral expressions for P and Q in [8]. U Separable Ostem,. A separable (in denominator) 2-D

2-D came. With Lemma 3.1 in mind, we have q-system will have AO(2) = 0 (and/or A(3 ) = 0) and all
Definition 3.2. The gramians are off-diagonal submatrices of P and Q are zero. The di-

agonal submatrices may be computed through two pairs
1 F dc.. dc.. of Lyapunov equations [11]. Clearly, a separable 2-D q-

P - FF system yields a separable 2-D 6-system.
(2,rj) 2 JT" 1 + rj I + W" Theorem 3.6. Let {A, B, C, D) be separable with A( 2 ) =

1 2 G* dcl, dc, 0. Then, p( 2 ) = Q(2 ) = 0 and p(3) = Q( 3 ) = 0, and
Q:~~ P)IT G' .c--• 1[ cAtP(1) + P1) A(')* + rhA"l)P(l) A(')'

whr P--p(l) p( 2 )1 [nd Q Q) Q( 2 ) 1
whe) p(4 and Q Q(3 ) Q(4) j. A(1)*Q(1) +Q(1)A(I) +(1)

Also, F(c,,c,) (1 - A)-'B = [f 1 ... ,, 1 ] and = - [CO) R(4)A(3)]" [CO1) R(4)A(3)]/r",;

G(ch,c.) "= C(Ic -A)-' = (gi ... g. A(4)p(4) + p(4)A(4)o A(4)p(4()
Remarks..A) ,A )

1. Note that, (Ic - A)-'I.-. =(, - A)'r, and = - [B(2) A (3)S(') [B(2) A(3)S(1)]/r,;
r. (3.14) A(4) *Q(4) + Q(4) A(4) + r,,A(4)" Q(4) A(4)

FlI._,. = F•; GIc.._. = 0 . r. (3.14) = _Q( 4).C(.)/ +

= ... C(2)*C(2)/rh.

2. Definition 3.2 is completely analogous to the 1-D and Here, R(4)'R(4) - rhTVQ( 4 ) and S(0)5(0) -- rhrhuP(1),
2-D -systems (7], [11].
LemmP r .2. PCon P i and efri r3.2 Us "- . z, (.4 IV. Coefficient Sensitivity
Proof. Consider P in Definition 3.2. Use c - z, (3.14), By generalizing a certain sensitivity measure, Lutz and
and definition of gramians for 2-D q-systems [11]. E Haldmi [91 have addressed sensitivity minimization of

The following are in complete analogy with 2-D q- MIMO 1-D CT systems. The SISO 2-D q-operator case
systems. is in [7]. In what follows, we study the coefficient sen-
Lema 3.3. The gramians may be represented as sitivity of the 2-D 6-model in section III. We follow a

00 00 more direct approach using Kronecker product formula-

P --. M!..tion and, hence, the results are applicable to the more
P =• "-d j ; general MIMO case. Using [1], we may show

i=O j=o

Qo oo. 0 0 A~ *C~ SAL(Ch, C- V '-[ 1 ]U 11X n '-[r,, F1 (4.1)

,..T. SB(c,,c.) = [I.® G] U,,xp (4.2)

s=O j=0 Sc(cii,c.) = Uqx. . [ ® F] (4.3)

where, for (i, j) = (0, 0), Mi, = 0, and, for (i, j) > (0, 0), SD (Ch, c) = Uq x p (4.4)

M4 = Ai-lj 0 +Ai,j A,-l[r IB(2)[ . Lemma 4.1. The quantities in (4.1-4.4) are given as

Lemma 3.4. Let {Ai, h, d&, .b with gramians 16 and (ý be 91
an equivalent system as in (3.10-11). Then, P = TPT*
and Q = T-IOQT-1. Moreover, the eigenvalues of PQ SA I [f""' f]
and P( are invariant. gn I
Definition 3.3. {A,B,C,D} is said to be balanced if (p) " P)
pO) = QV) _" () = diag(a•1),0(') .... ()} and [1 .= " "

p( 4) Q( 4) - E(4) = diag• •S, ( ), . I o()

If the diagonal submatrices of P and Q are each posi- g( ... g J
tive definite (p.d.), a BL realization may be obtained [4]. fr()* ... f( 1 )
Regarding this, we have 1 fn

Lemma 3.5. Local reachability and observability of Sc = . -. ;
{A, B,C, D} and {IA, hd, b)} are equivalent. Moreover, f ()" f(q)"



[Ei,.i EI,p," It is customary to perform a minimization of -M. Hence,

SD " " " . one attempts to characterize those fA, B, C, D } that ar

j E'bound optimal' with respect to M. Analogous to 2-D

q-systems case (71, one may for instance show that a BL

Here, ffJ)" denotes a (q x p) null matrix except its j-th realization (modulo an orthogonal nonsingular transfor-
nmation) is 'bound optimal' with respect to M.

row which is fi" and gj) denotes a (q x p) null matrix Compared to a q-system, its 6-system counterpart
except its j-th column which is gi. yields a smaller V whenever trace[Q] > trace[r(ýr], that

Proof. This may be shown through the results in [1] and is,
simple yet tedious algebraic manipulations. E
CoroLLar 4.2. The quantities SA, SB, SC, and SD of the (1 - r.3) . trace[(4')] + (1 - r,). trace[(Q(')] > 0. (4.11)

6-model and the quantities SA, Sj, Sd, and Sb of the Note that, with the local reachability and observability

corrsponding q-model are related by SAIe. = -- SA, assumption of { A, B, C, D}, p.d. of Q(1) and Q( 4 ) (and

SB1.--- T:§.o, Sclo-- = ýd, and SDI--- = 5 b, hence of 0(0) and Qý(4)) are guaranteed. Thus, (4.11) is

where T " hr .[q e Tt" ra.q E -R~q. satisfied if rh < 1 and r, < 1.

Proof. Apply (3.14) to Lemma 4.1. U
To proceed further, we utilize the following VII. Conclusion

Definition 4.1. Let H(c&,,c,) be a bivariate matrix- We have developed the 6-operator analog of the

valued function that is analytic on T,. Then, Roesser local s.s. model. Notions of gramians and BL

realization are also proposed. As is expected, under mild

I • Hity properties.
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